Area-Correlated Spectral Unmixing Based on Bayesian Nonnegative Matrix Factorization
نویسندگان
چکیده
To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed method, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density functions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between adjacent or similar areas.
منابع مشابه
جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملSpectral unmixing using nonnegative matrix factorization with smoothed L0 norm constraint
Sparse nonnegative matrix factorization (NMF) is exploited to solve spectral unmixing. Firstly, a novel model of sparse NMF is proposed, where the smoothed L0 norm is used to control the sparseness of the factors corresponding to the abundances. Thus, one need not set the degree of the sparseness in prior any more. Then, a gradient based algorithm NMF-SL0 is utilized to solve the proposed model...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملSpectral Signal Unmixing with Interior-Point Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) is an unsupervised learning method that has been already applied to many applications of spectral signal unmixing. However, its efficiency in some applications strongly depends on optimization algorithms used for estimating the underlying nonnegatively constrained subproblems. In this paper, we attempt to tackle the optimization tasks with the inexact Inte...
متن کامل